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ON THE STRUCTURE OF THE PHASE SPACE AND BIFURCATIONS 
IN THE DISCRETE LORENZ MODEL OF CONVECTIVE TURBULENCE* 

Z.S. BATALOVA, I.A. DUBROVINA, 1u.I. NEXMARK, and E.E. ORLOVA 

Results of qualitative and numerical investigations of the Lorenz system of differ- 
ential equations are presented. Analysis of that system is reduced to the consider- 
ation of point mapping of a straight line into a straight line. This provides a 
visual and comparatively simple geometric representation of the system motion, thus 
simplifying the analysis and providing more comprehensive information. 

Study of the Lorenz system is based on the investigation of isoclinal structures and of 
the part played by these in the formulation of stochastic motions /l-6/, Theuseofnumerical 
method yields a series of one-dimensional point mappings that geometrically interpret the 
structure of solutions of the Lorenz system and its variation as parameter r is increased. Ex- 
istence of isoclinal structures which appear when integral manifolds of saddle-type periodic 
motions intersect equilibrium states is established. Changes of that structure produced by 
variation of parameter r is considered. It appears that generation of stochastic motions is 
associated with transition through a reasonalby smooth isoclinal structure. As r is increased, 
degradation of stochasticity takes place at which the phase structure rapidly changes withvari- 
ation of r, and complex stable periodic motions with fine regions of attraction develop. 

The Lorenz three-dimensional autonomous system of differential equations was investigated 
in a number of publications (e.g., /1,7-14/J. The interest in it is due to that the Lorenz 
system is a Gale&in approximation of equations of two-dimensional convection and, also, to 
the unusual behavior of its solutions, which may be considered as some model of turbulence gen- 
eration /1,8/. Other phenomena, for example, the process of oscillation generation in certain 
types of lasers /I/, are also defined by Lorenz equations. The Lorenz equations are interest- 
ing in themselves, as the subject of the qualitative theory of differential equations and of 
the theory of oscillations. 

1. General information on the Lorenz system and its reduction to the study 
ofpointtransformation. Consider the Lorenz system of differential equations 

x- = -ax + ay, y’ = rx - y - xz, z’ = -bz 4 xy (1.1) 

where u, b , r are positive parameters. Let us point out some singularities in the behavior 

of phase trajectories of system (1.1). 

lo. It admits the substitution of variables -x, --y , -z for x,y, z without affecting its 

form. Its phase trajectories are, consequently, symmetric about the a axis. 

2O. It admits the system of spheres 

v (2,Y, 2) = f -t y* + (2 - (r - r)* = const 

for which by virtue of 11.1) 

v = -201 - 2y' - 26 [z - '/* (u + r)12 f ‘l,b (a + r)* 

Then v' ( 0 when V > b (a + r)’ (b > 2, u > i) and, consequently, phase trajectories from 

the whole space I, y,c converge inside the sphere 

tz i y" +- (z - u - + = (u + +-b (1.2) 

of radius (a + r)r/b with center at point (0, 0, 0 -+- r). 
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3O. By virtue of system (1.1) we have 

div (z', y', z') = -1 - u - b < 0 (1.3) 

Hence, as the time f increases, the phase volume in any place of the phase space under- 
goes an exp(1 + u + b)t -fold contraction. The space volume decrease is not due to multidirec- 
tional compression, on the contrary, compression in some directions is accompanied by stretch- 

ing in others. 
Consider the equilibrium state of system (1.1). Equating to zero its right-hand sides, 

we find that when r( 1 there is the unique equilibrium state O(Z=Y=Z=O), and when r> 1 
there are three equilibrium states O(Z= y = Z= 0), OI,a(~ = Y= f I/b(r - I), Z = r - 1). The 
characteristic equations of equilibrium states 0 and O,,, are, respectively, of the form 

(k + b)D.’ + (a + 1)h + u (1 - r)l = 0 (1.4) 

hJ + (u + b + l)hs + u (a + r)h + 2ba (r - 1) = 0 (1.5) 
As in earlier investigations (e.g., /l/), we set u= 10, b =‘/a. It follows from (1.4) 

and (1.5) that as r increases from zero, the equilibrium states undergo the following trans- 
formations: the nodal equilibrium state 0 which is stable when r( 1, becomes bifurcated when 
r = 18 after which it becomes saddle unsteady; simultaneously two stable nodal equilibrium 
states 0, and Oz are generated from 0,which with increasing r become successively stable 
nodes and foci, and when r= 24.74 are transformed into unstable saddle-foci. Note the singular- 
ity of behavior of phase trajectories: with increasing time, their rapid approach to some sur- 
faces takes place. This behavior of trajectories, directly observable in numerical analysis, 
is in accord with the indicated above over-all intensive contraction of the phase volume, and 
with the considerable differences between the real parts of roots h,,, and h, of the character- 
istic equation (1.5), which are defined by the approximate formulas 

h1.2 = 0.037r - 0.915 f i (0.1% + 3.7) 
hS = -0.06r - 11.5 (10 <r < 40) 

The change of stability of saddle-foci O1 and Ozisaccompanied by the merging with them 
of unstable saddle periodic motions r, and rz generated from loops of separatrices S,- of sad- 
dle 0 when r = 13.92. 

When r(24.06 the over-all behavior of phase trajectories is simple: with O<r<l all 
of them move to the stable equilibrium state 0 , and for l(r(24.06 all phase trajectories, 
except the separating ones, move to one of the stable equilibrium states O1 or Oz. The sep- 
arating phase trajectories constitute a two-dimensional invariant surface 
equilibrium states 0. 

Sz+ of the saddle 

When r> 24.06 , the over-all behavior of phase trajectories is much more complicated; it 
was investigated in /1,8-14/. To study the behavior of phase trajectories in this case we 
use the method of point mapping T generated by trajectories of system (1.1) of the plane z = 
r-l into itself. We denote that intersecting plane by 2. Mapping T is discontinuous along 
lines K, and Kz of contact of phase trajectories with the Z plane, whose equation is of the 
form zy= b(r - 1). It is also discontinuous on line R of intersection of the Z plane withthe 
separating surface S,+ of the saddle equilibrium state 0. In some neighborhood of that line 
mapping T is smooth and can be continuously extended on R. We denote by Tz and T, of nar- 
rowing of mapping T on different sides of line R, which are continuously prolonged ontothe 
latter (Fig.1, a-b), where mapping T, is determined to the right of line R and T, to the 
left of it. These mappinas transform line R into intersection points MI and M2 of the Z 
plane with separatrices Sl- of the equilibrium state 0. 
transforms points M, and M* 

Application of mappings T, and T, 
into points M,' and Mz', respectively. Numerical determination 

of coordinates of points M,' and M,’ shows that , as parameter r is increased 
line R and when passing through rz13.92 simultaneously intersect 

they approach 
R, moving from one side 

of it to the other. In the z plane fixed points denoted by the same symbols correspond to 
the equilibrium states 0, and 0,. 

As previously stated, all phase trajectories reach the sphere (1.21, with increasingtime 
t. This SIlableS US to Confine the investigation of the point mapping T to the circle 

Zp +- y* < b (u + rp - (u + I)* (1.6) 
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Fig.1 

When i<r< 13.92 this circle, after one mapping T, is transformed into some bounded 
bands of width not exceeding 0.05 and, after two such mappings into bands not wider than 10e3 

(in Fig.l,a-cthey are represent- 
ed by lines J, and J, ). With 
further application of T mappings 
the width of these bands continu- 
es to decrease, the bands simult- 
aneously shrink, and undergo the 
inward transformation into the 
stable fixed points 0, and O,.The 
latter conforms to the previously 
noted behavior of phase trajector- 
ies and roots ofthecharacteristic 
equation of the equilibrium states 

0, and 0,. 
When r-1 13.92 , the behavior 

of successive transformations of 
region (1.6) ismorecomplex, since 
then points of regions inside 
circle (1.61 on different sides 
of line R can convert into each 
other. However even now succes- 
sive transformations approach as 
rapidly some curves J, and J?. The 
numerically calculated curves J, 
and J, with r = 20, 24.4. 5U. 80 are 
shown respectively, inFig.Z,a-d. 

Thus the T mapping is strong- 
ly compressive in directions to- 
ward curves J, and J,. Hencethe 
investigation of that mapping re- 
duces to the mapping of curves I, 

and J, into themselves and into 
each other. To represent point 
mapping of curves J, and I2 we 
select along them coordinate u as 
the distance from the discontinu- 
ity line R, and take it as posi- 
tive in one direction and negative 
in the other. The numerically cal- 
culated successor functions V = 

f(u) for the T* mappingof curves 
J, and J, are shown in Fig.3. 
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Fig.3 

2. Poinr mapping and the phase space structure. Let us investigate the struct- 
ure of the phase space r,y,z subdivision in system (1.1) by considering the dependenceoftbe 
corresponding to it point mapping T on parameter r. As indicated in Sect.1, theequilibrium 
state 0 is over-all stable when r< 1 and, when 1 (I( 13.92, all phase trajectories ap- 
proach the equilibrium states 0, and 0, whose attraction regions are divided by the separat- 
ing surface ST+ of the saddle equilibrium state 0 (see Fig.l,a). Below we consider the case 
of r > 13.92. When r = 13.92, points M, and M2 of the second intersection of separatrices S,- 
with the 2 plane reach curve R, which corresponds to the formation of loops of separatrices 

S1_. When r> 13.92, the saddle periodic motions r1 and Pz are generated from these loops 

o?ig,l,b). In the separating plane Z shown in Fig.Z,a (for r= 20) the stationary double 
saddle points rl, Pr' and flrPZf, for which lines J, and Jz, and L,,L,’ and -L k' are, xe- 
spectively, the outgoing and incoming invariant curves, correspond to motions r1 and rz. It 
will be seen that the invariant curves J1,J, and L,,L, intersect each other forming an iso- 
clinal structure whose appearance in system (1.1) produces an infinite set of various saddle 
periodic and other motions in the neighborhood of the isoclinal structure /16/. However the 
behavior of successive iterations of the point mapping T upto r= 24.06 remains on the whole, 
simple: all points, except the set a of zero measure points, approach one of the stable fix- 
ed points 0, or 0,. The set a plays the part of the boundary separating the attraction re- 
gions of these points. 

The above is reflected in the behavior of the successor function V=/(U) for curge J, , 
shown in Fig.j,a, for the T? mapping of curves J, and J, (by virtue of the property 1 of 
the successor function for curve Jg is symmetric to that for J, about the coordinate origin). 
The points of intersection with the bisectrix correspond to fixed points of the T mapping. 
PointsM1' and Mz’ of the second intersection of separatrices S,- with the Z plane lie on the 
V axis symmetrically about the coordinate origin, with point NI,' above point r1 and point 
M,' below point r2. Hence the successive transformations of pointsM,'and iw,' reach the 
regions of attraction of the stable fixed points 0, and O,, respectively. 

The described structure of the Tz mapping remains unchanged when 13.92~~ < 24.06. When 
r=: 24.66, pointsM,'and _%f*' reach the invariant curves L, and A,, which correspondstothe 
appearance of a fairly smooth isoclinal structure. The coordinates of points ~18~' and I'% (M,' 
and P,) have different values on the curve of function V = f(u). When r > 24.06,point ;1;1,'drops 
below point r,, and the intersection point of curves Jt and 1~1 vanish. There are three 
alternatives for the phase.trajectories, viz., approach one of the equilibrium points 0,or O?, 
orcontinuouslyintersectthe separating plane Z. The relative position of the T mapping 
curves is shown in Fig.Z,b for r= 24.4, and in Fig.3,b is shown the Tz mapping curve of J,. 
It will be seen that point&f, lies below point Pi, hence successive iterations of point M,' 
are on the segment I-c,c] (c is the ordinate of pointM,').Since on segment --c,c] f’(u)> 1, the 
'I"' mapping is a stretching one. The iterated sequencies of points that begin on segment 
[--c,cl correspond to stochastic motions of system (1.1). 

When r = 24.74 , the fixed double saddle points lY1, r,' and r%, rr' merge with the stable 
fixed points 0, and O?, which corresponds to the merging of saddle periodic motions r, and 
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1‘, with the stable equilibrium states 0, and 0,. As shown in /lb/, in the case ot such h..-- 
furcations the Liapunov quantity co must be positive, which can be verified directly. 

when r > 24.74 , all points of the 2 plane in the T mapping reach the small neighborhoods 
of curves J, and J, (Fig.l,c). The attraction region of stochastic motions coincides with the 
entire space of system (1.1). As parameter r increases, the form of curves J, and J, and of 
their transformation into themselves and into each other undergoes a number of changes. AS 
shown in Fig.2c,d, r= 50 and 86, respectively) each of curves J, and J, consists of two 
parts, which is due to the discontinuity of the T mapping of the dividing C into itself along 
lines K, and K, of contact of phase trajectories of system (1.1) with the C plane. Points ,\I,' 
and M,’ for r=31.65. This is accompanied by the emergence of new points of the successorfunc- 
tion discontinuity and complication of its curves (shown in Fig.3,c.d for r := 30 and 80, t-c- 

spectively). As r increases, points M,'and ,$f,' again approach line R, and at r zz 54.65 
intersect it. This corresponds to the formation of new loops by separatrices S,- of the cquil- 
ibrium state 0. As in the case of r= 13.92, saddle periodic motions arise from these loops. 
The double fixed points D, and D,' correspond to them in Fig.3,d. 

Beginning with sane r> 65 the point mapping curves have points at which the tangent is 
horizontal. This means that there can be no stochasticity in any arbitrarily small interval 
of values of r, in the sense that there exists everywhere a dense set of values of r that 
correspond to the existence of stable fixed multiple points. These stable points can also ap- 
pear at lower values of r, when the stretching properties of mapping of curves J, and J, are 
lost, however, in the presence of points with horizontal tangents it is automatically so.Thus, 
when r= 100, stable periodic motions were disclosed; they correspond to the following six- 
term cycle of T mapping fixed points: 

A, (-17.12; -30.3),4,(-11.62;--l.56), A, (-22.27; -37.28) 
A, (-9.32; 7.63), A, (27.7; 56.93). As (2.62: -26.26) 

This stable cycle exists in the interval 199, 98; 100, 051. 
The particular character of behavior of solutions of the Lorenz system for these values 

of parameter r may be defined as follows. Assume that scme random perturbations with finite 
correlation time are added to the right-hand sides of equations. Then for each value of para- 
meter r there exists some threshold of the perturbations magnitude, after which a random wand- 
ering begins in the neighborhood of the two-dimensional surface that corresponds to curves J, 
and J2 on the dividing /surface/ Z . For some r these threshold values are zero, for others 
they are small. Thus for the periodic motion disclosed when r=100 the random wanderings 
appear in the form of random jerks not exceeding 0.05 of the I coordinate, OCCUrring overtime 
intervals LZt = 4.10-*. 
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